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ABSTRACT

This paper gives sufficient conditions to guarantee the existence of a

shock layer solution connecting two different ecuilibrium states in a van der

Waals fluid. In particular, the equilibrium states can belong to two

different phases of the fluid. The constitutive laws come from a modified

Korteweg theory which is compatible with the Clausius Duhem inequality. The

Clausius Duhem inequality in turn gives rise to a Liapunov function. The main

mathematical tool is the LaSalle invariance principle.
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SIGNIFICANCE AND EXPLANATION

In the study of both static and dynamic phase transitions a typical model

has the constitutive law for stress given by Korteweg's theory. In this

theory, the classical form of Navier and Stokes has additional terms which

model the effects of interfacial capillarity and depend on the spatial

gradients of the density up to second order. It is these capillarity terms

which allow for smooth static phase transitions. Unfortunately, Korteweg's

theory is not compatible with the usual continuum theory of thermodynamics

since the Clausius-Duhem inequality is, in general, not satisfied. Recently,

a modified Worteweg theory has been developed by E. Dunn and J. Serrin, that

does not suffer from this defect. We use this theory to generate a set of

shock layer equations which are appropriate for shocks, including dynamic

phase transitions. One of the immediate benefits obtained from this theory is

that the Clausius-Duhem inequality gives rise to a Liapunov function for the

shock layer equations. We then give sufficient conditions for the existence

of a shock layer connecting two equilibrium points.
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DYNAMIC CHANGES OF PHASE IN A VAN DER WAALS FLUID

R. Hagan and J. Serrin

INTRODUCTION

In a paper by Serrin [1], Korteweg's theory of capillarity (2,31 was used to find

conditions for equilibrium between liquid and vapor phases of a van der Waals fluid. In a

subsequent paper, Slemrod (41 extended Serrin's approach to study dynamic changes of phase

in a van der Waals fluid, under the assumption of isothermal motion. This study was

further extended by Hagan and Slemrod in (5]. The next logical step was to drop the

asumption of isothermal motion. This was done for a van der Weals fluid in a paper [61 by

Slemrod. In [61 he showed the existence of a shock layer that converts vapor to liquid and

the existence of a shock layer that converts liquid to vapor, under assumptions that render

the motion nearly isothermal. These assumptions are that the specific heat capacity at

constant volume is large, the coefficients of heat conduction and viscosity are of the same

small order U, and the coefficients in the capillarity terms of the stress are of order

2'.

One of the problems that complicates the study of dynamic changes of phase is the

incompatibility of the classical Korteweg stress with the Clausius Duhem inequality (7].

Recently, however, a modified Iorteweg theory has been developed by Dunn and Serrin [8)

that is compatible with the Clausius Duhem inequality. In this theory they posit the

existence of a rate of supply of mechanical energy, the interstitial working, which takes

into account the working of longer range interactions. With this additional term in the

energy balance it is possible to derive a constitutive relation for stress that depends on

spatial gradients of the density and still satisfies the Clausius Duhem inequality. These

spatial gradient terms are used to model the effects of interfacial capillarity and at the

same time allow the existence of static phase transitions 11], [9]. That is, if we were to

use the classical form of Navier and Stokes for the stress then we would find that some

dynamic phase transitions exist, but no static ones [10], (11].

Sponsored by the United States Army under Contract No. DAAG29-R0-C-0041.



Zn this paper we use a special form of the modified orteweg theory contained in

(81. The Clausius Duhem inequality then gives a direct proof of the increase of entropy

across a shock layer and it also provides a Liapunov function, in the sense of LaSalle

112], for the shock layer equations.

In section two of this paper we derive the shock layer equations and the increase of

entropy theorem. In section three we examine some of the properties of the Hugoniot curves

for a van der Waals fluid. In section four we state sufficient conditions to guarantee the

existence of a compressive shock layer in a van der Weals fluid.

-
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SECTION 2

U0  U

- 0  v 1

0

Figure 1

We consider one-dimensional steady flow of a van der Waals fluid. The flow may be

thought of as takin9 place in a cylinder of uniform cross-section parallel to the x-axis.

We will always assume that the fluid velocity u is positive so that the fluid flows from

left to right. The absolute temperature will be denoted by 0, and the specific volume

by v.

We will seei a smooth solution (u(x),v(x),6(x)), x e R of the equations of motion

satisfying the following boundary conditions,

(2.1) (u(x),v(x),O(x)) + (u0 V0 ,80 ) as x + -

I
S(u1 ,, 1) as x 4

(u(x)',v(x)',O(x)') * (0,0,0) as x + ± and v"(x) + 0 as x * ± • If such a smooth

solution exists, it is called a shock layer. of particular interest to us in this paper,

is the question of the existence of a shock layer, when (v,8 0) and (v 1, ) belong to

different phases of a fluid. If such a shock layer exists it will be called a dynamic

phase transition.

-3-



The balance laws for mass, momentum, and energy for a one-dimensional stea!' -.,w,

the absence of external body forces and radiant heatinq are (see [81)

(2.2) (V- u), = 0

-1
(2.3) v uu - T* I,xx

(2.4) v- ue' - Txxu' + k' + q',

where ( ) = d( )/dx. In addition to the balance laws we also have the Clausius Duhe

inequality,

(2.5) v un' ) )

Here, TXx is the x component of stress in the x direction, e is the specific

internal energy, n is the specific entropy, k is the interstitial working, and q is

the heat flux.

We will have need of the following notation, if f is a function of v and 8, then

fl - f(v ae ), f = f(v0e ), and [f] = fl - fO"
1 q 1 0" .Te o aysoklyr

Theorem 1.1. (The increase of entropy across a shock layer.)

Suppose q - 0 whenever 9' - 0. Then n I ) n0 for any shock layer.

Proof.

Integration of (2.2) gives

(2.7) u(x) = mv(x),

for some constant m. Furthermore m > 0 since v > 0, and u > 0 by assumption. We

may now integrate (2.5) from x = -W to x = 4, to obtain,

m(l1  0) a

But 0' - 0 at x=_, hence

(2.8) 11 n

In addition to the balance laws and the Clausius Duhem inequality we need to specify

the constitutive structure of the fluid. We shall use the following special form of a

modified Norteweg theory developed by J. E. Dunn and J. Serrin (8]. The two main features

of this theory that makes it useful for work in phase transions are the preservation of the

Clausius Duhem inequality and the occurrence of higher spatial derivatives in the

constitutive relation for stress.

-4-
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The constitutive relations are (specialized to one-dimensional flow from equations

(1.26) and (1.27) of [8])

(2.9) 
k O ) 2

v

3o (v')2 30

(2.10) x - -P + (X + 2W)u' 3v 2 38 - ov

(2.11) q = Ke'

o 2

(2.12) I - '+ . (v'), the specific Helmholtz free energy,

22

(2.13) i We W)~2 38
(2.14) een = - (v')

where a - cv
- 3 

and c is the surface tension coefficient. Here ; and e are the

equilibrium entropy and internal energy. They are functions of v and 0 only, as is the

pressure p. Furthermore, these quantities satisfy the classical Maxwell relationships of

thermodynamics. In general c, , u, are positive continuous functions of v and 8,

while 0. p, a, and W are C.

In this paper we shall restrict ourselves to the case where p and e satisfy the

following hypotheses,

(W) P(v,O) a
) - b 2 , for all (v,8) e n ,

v

(D2) 38 (ve) > 0, for all (v,8) e 0 ,

where A is defined as {(v,O) : b < v < -, 0 < 8 < -). Here R,b, and a are positive

constants and c v is the specific heat at constant volume. (Hi) is of course the van der

Waal* equation of state.



Let us substitute (2.7) into (2.3) and (2.4) to obtain,

(2.15) mu' T O
xx

(2.16) me' = (Txxu)' - T u + k' + q'
xx

We can now put (2.15) in (2.16) to obtain,

(2.17) m(e + I 2 -(TxU) + k' + q'
2

Now we may integrate (2.15) and (2.17) from - to x and apply the boundary condition

(2.1). This gives

01a(e.a 4.M(u -u
) =Txx - Txx0 ,

1 2 2xxoU0(2.19) m(e - 0 + I (u
2 -uO) Txx u - T xu0+ k + q.

We now insert (2.7), (2.9), (2.10), (2.11) and (2.14) into (2.18) and (2.19) to obtain,

3 3 v 2 - m(k + 2u)v' + p -
+ m 2 (v p ,

(2.20) r" + v2 + m -v 0 ) 0

and

(2.21) KOO - Lem 2 ) 2 0 -0 + "0 ) - C -v 0 )2

It is convenient for us to define the following two functions,

(2.22) L(v,6) - p(v,e) - PO + M2 ( v - v)

and
- 12 02

(2.23) N(v,e) - (v,,O) - e 0  Po(v - v O ) m2(v - 2

We may now write (2.20) and (2.21) as a system of three first order ordinary differential

equations, namely

(2.24a) v' - W

9o 9o2
(2.24b) w + L + vv,8) 0

wO a 2

(2.24c) e'- s - + v,), (v,B) e s)
2 F.6 w a~,)

We shall refer to this system as the shock layer equations.
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Lemma 1.2.

Given (u0 ,v0,80 ) and (u ,V1 , 1 ) with (v 0,0 ), (V ,81 ) e n, a shock layer exists

satisfying (2.1) if and only if there exist a solution to (2.24) satisfying,

(2.25) (v(x),w(x),8(x)) + ((Vo,0, O 0 as x +

((v1,0,81) as x + -

and (2.7) is satisfied.

Lemva 1.3. (The Rankine-Pugoniot jump conditions).

A necessary condition for a shock layer to exist satisfying (2.1) is that the Rankine-

Hugoniot jump conditions are satisfied:

(2.26s) [u] = m1v] I

(2.26b) [p] + m2 (v] = 0 1

[ +p 1 + p0
(2.26c) + [v] = 0

Proof.

If a shock layer exists satisfying (2.1) then there exists a solution of (2.24)

satisfying (2.25) and (2.7). Let x -; then we have from (2.24b) and (2.24c)

(2.27) M L I . 0 ;

2 1V ~2 _2 .Terfrhence [p] + m2 v] = 0 and J;] + p0tv] - I 2v] 0. Therefore

Ee] + I(P + P0) Iv ] = 0. Now let x + in (2.7); then U= my and u0  M.

Therefore [ul - m[v].

We can solve the van der Waals equation of state for e in terms of v and p

algebraically. Hence we can define e(v,p) e e(v,O). We may then define

(2.28) H(v,p;v 0 ,p0 ) e(vp) - e(v0,p0 ) + 2 (v - v0 )

The curve in the v - p plane consisting of all (v,p) satisfying H(v,p;v0 ,P0) 0 is

called the Hugoniot curve generated by (v0 ,p0 ). Let us note that any state (v ,PI)

lying in the intersection of the Hugoniot curve with the straight line given by

2
p = p0 - m (v - v 0 ) will satisfy (2.26b,c) or equivalently (2.27). The corresponding

jump Eu] is then given directly by (2.26a). Thus all conditions of (2.26) are satisfied.

-7-



It is convenient at this point to group together several thermodynamic identities

which will be useful in the following sections. First, we have the standard Gibbs identity

(2.29) 941- de + pdv

and the Maxwell relations

(2.30) e i p
V e ae

(2.31) In
IV Be

In addition, we shall need the formula

(2.32) Iv I" c B
V

which follows from the chain rule

together with (2.31) and the relation

30 ae c BeAlv -v

From (2.30) one also gets aZ/av a/v2  for the van der Weals equation of state, so

that in this case

(2.33) e = - + J c(e)d.

-9-



SECTION 3

The vian der Weals equation of state possesses non-monotone isotherms for 8 < ec,

where e6 is the critical temperature and monotone decreasing isotherms for 0 ec (see

Figure 2). We will define the unstable region in the v - 8 plane as

(3.1) Ou f(v,e) e a fi ve >o

Thus nuis bounded by 
'

2a (v b(3.2) 8-B(v) b < b) b <

we have -2av R- 4)v b and hence 6 u v) has only one stationary point

=c 3b on (b,-). Clearly, euCv) takes on its maximum value 8 c Oa/27Rb, at

v-v.

a I Figure 2. Isotherms for a van der Waals fluid.
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We now define

(3.3) 0 . {(v,e) e n : e < <a C

(3.4) no {(v,e) e n' e (v) < e < ec, b < v < v c

(3.5) 0 u - (Cv,e) e n eu(v) < e < 6c, vc < V <

Here 0 is the super-heated vapor region, 0 is the liquid region, and Au  is the

vapor region. (See Figure 3).

I 0S
I

uC

0
IV

b v
Figure 3

We shall on occasion refer to the fluid state in terms of v and p instead of v

and 0. On such occasions it is useful to define the notation

n {(v,p(v,e)) : (v,e) e n I where X is I,s,u,U, or empty.x x

Note that the map (v,G) * (v,p(v,O)) is a homeomorphism of P. onto n.

We now state and prove some useful lemmas concerning the Hugoniot curve.

Leams 3. 1.

Let (v0,P0 ) e ; and let I be any compact interval such that v0 e I C (b,-). Then

the Hugoniot curve generated by (v0 ,P0) approaches the isotherm passing through (v0,p0)

uniformly on I as inf c (0) approaches infinity.

0<0<- v



Proof .

H(v,pvOpO) - e(v,p) - e0 + - (V - vO)

Hence 
V-V

a. o

jp (V.PIVoPo) -= 2

Pute 
C (V - b)

and so
(V- b) v-v

a v + - - as inf cv(0)
p2

Therefore we can 6Ve H(v,plv0 ,P 0 ) 0 for p as a functiOn of v, say p h(v), if

inf c (e) sufficiently large. Assuming that this is so, we have

a. c! e +V-V+ Od 00 .
, 2 - dv 2

We also have

c (v - b)
ae .ae + e 1 .--e

TV i- ae3v( P 2 R avie

Thus

vc (V-b) v -) v Cv -b)
(3.6) v 0

and hence ! -L uniforily on I as inf c (8) + -. Thus
an hnc v v 0O<O<W. V

h(v) - h(vO ) 
+ J P(Z, 0 )dZ = p(v'.0 0 Po

v
0

uniformly on I as inf Cv() + -. Therefore h(v) * p(v, O }) uniformly on I as

inf c (6) + -, since h(v O ) =P(V,
) °

Let us define P 4 c

V

-11-
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Leta 3.2.

If cv  in constant, then H(v,p;vO,pO) - 0 can be solved aloehraically for p as a

function of v.

(3.8) pY + 1) (Y - 1) -
2 V- 2 0 b 2 - -V

poi + 1) v. -(Y -2 1) v - bj + 1- ((2 - y)v - b)
222 0

v 0

Let p - h(v) be the solution of H(v,p;vo,pO ) 0 then

(3.9) (v - v)h(v) + Y + 1 2y(v - b) p + -2.+_b Y - b
a0 Y +1 a(y +l) 0 v 2 v 21'

where
('- 1)v0 + 2b(3.10) -

s y+I

Proof.

We have p a and hence
7=-b 2'anhecV

vv

e V - b a) a
e (Va

a +
v

v v Y I v2 v

P + Po
Now H(v,pjv 0 ,P0 ) - e - e0 + 2 (v - v0 ), and so the results follow.

It is clear from (3.9) that h(v) has exactly one singularity at, v v a An

c + -, then y + I and v5 8 bs as c + 0, then Y t and v + v 0 .V v a

Lemma 3.3.

Suppose cv  is constant. Then

y - 1
(3.11) lim h(v) - - - P0

Proof.

The result follows at once from formula (3.9).

-12-



in the next lema we shall examine the behavior of h(v) as v approaches vs . To

this end we define

(3.12) a " sqn{- 0 + 1 ( y( - 1)(y - 2) + -) +
y((y - 1)y + 2)2 Y y

v0

where 
0

b

Lama 3.4.

Suppose cv  is constant and (v0 ,P0 ) e f. Then

r-, if 01
(3.13) lum h(v) -

v~vs L if a - -1

( 4, if a -1

(3.14) uLm h(v) -
v~vs L " if a - -1

(3.15) im h(v) Y- ( p + + jb}, if 0 02 V'
V+V v v

a a a

lemma 3.5.

(2y - 1)b
If cv is constant and a 1 or 0 and y ) 2 or v. < (Y - 1)(2 - Y) then

h(v) ( - for b1v)v
(T + 1) PO s

Proof.

LEt

2Y(v - b) +..Y.a + Y- 2 ILb

(3.16) a(Y + 1) P0 +  
v 2 v 0  v 

2

0

so that the right hand side of equation (3.9) is given by 2 f(v). Lemma 3.4 now

follows since a = sign f(v ). To ohtain lamma 3.5, we have by hypothesis that a = 1

or 0 and hence f(v ) 0 0. We may write (3.16) as,

-13-



(3.17) f(v) - f(v ) + Y 2 + y b
s v 2 v 2V U V

B

If ) - 2, then f(v) ) 0 for h < v v N Now suppose that 1 < y < 2. The first and

second derivatives of f(v) are,

f'(v) = 2 - y lb and f'(v) = -2 (2 - 3b)
2 3 " "v V V V

- 2b - 2b

Now f'(v) has only one zero at v 2 and f"(v) - -i > 0. So that f(v) takes on

its minimum value at v. If v s < then f(v) > f(v s ) ; 0 for b > v < v s since

0 - agn f(vs) - 1 or 0 and f(v) strictly decreasinq on b ( v < ;. But v 9 < ; if
(2y - 1)b

and only if v0 < (y - 1)(2 -) by definition. Thus under the hypotheses of the lemma

f(v) > 0 for b ( v ( v. Now (3.9) can be written as

(3.18) (v - V )jh(v) + I P 2a f(v)

8 +1 I Y +,

and thus

(3.19) h(v) ( - I PO for b ( v < v.
Y + 0

lama 3.6.

If the hypotheses of Lemma 3.5 are satisfied then the Rankine-flugoniot jump conditions

cannot be satisfied if p0 > 0 and v, < vs .

Proof.

In order for the Rankine-Hugoniot jump conditions to be satisfied, we must have

2 h(v 1 ) - PO
v -v

-2yp 0

and so h(v1 ) - P0 ) 0, since vI < v 0 . But by Lemma 3.5 we have h(v1 ) - P0 4 T-1 0

and hence the conclusions follows.

-14-



SECTION 4.

Theorem 4.1.

Assume that (v1,Pl),(vo,pO ) e fl \closure (n ) and that v, < vO ,u

H(v 1 ,Pl;vorp o ) . 0, and

P1 - P0 2-- m (0O
v1 - v0

Furthermore, suppose that the chord connecting (v,,p1) to (vo,po) lies above the graph

of H(v,p;VOp O) - 0 on the interval vI < v < vo and is not tangent to the graph at

either end point. Assume finally that the straight line extension of this chord does not

intersect the graph of H(vp;vo,Po) = 0 when v > v 0 and p ) p(v,O). Then there exists

a unique compression shock-layer connecting (vo,po) to (vlpj). Furthermore,

6 > 0So 1 i > ' the flow is supersonic at the state (vo,po), and subsonic at the

state (vlPl).

The proof of Theorem 4.1 will he carried out with the aid of the following lemmas.

I

010

I 
M=0

I

0 b v 1

Figure 4
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Lemma 4.2.

Each of the equations M(v,e) = 0 and L(v,8) = 0 uniquely define e as a function

of v, say e - 6M(V) and eL(V). Furthermore under the hypotheses of Theorem 4.1 the

curve L = 0 intersects the v-axis in exactly two points v - b and v - ;, where

> v0 . Moreover the curve L = 0 lies above (below) the curve M - 0 in n when

v I < v < v 0 (v 0 < v < V1 ). That is

(4.1) L (v) > 6 M(v) for vI < v < v.

(4.2) eL(v) < ev(V) for v0 < v <L NI

Proof.

We have

(4.3) am >0-=cv >

and

(4.4) -L 0>
36 36

so that M = 0 and L - 0 can be solved for 8 as a function of v. In particular

(4.5) e (v) . - i+ 0- m2(v -v
L 1z 2 0

v

It is clear from (4.5) that e L(b) = 0. In the v - p plane the line L - 0 intersects

the lower boundary of the region 0, given by p = p(v,O), b < v < -, only once since

L - 0 has negative slope and p - p(v,O) has positive slope. Therefore in the v - e

plane the curve L - J intersects the v-axis (i.e. 6 - 0) only once in the interval

(b,m).

The curves L - 0 and P - 0 intersect in n if and only if the line L = 0 and

the curve H - 0 intersect in ;, as follows immediately from the relation

(4.6) H -M I (v- v0 )L

Thus It is sufficient to prove that the curve L - 0 lies above the curve M * 0 for at

least one value of v in the interval (vl,v 0 ). We have

3H cv - h) (v - vO }

(4.7) 3pv " Y 2 > 0

-16-



in Some neighborhood of (v 0 p,0 ). Hence, by our assumption, in this neiqhborhood H > 0

on L - 0 if v < v 0 . Thus by (4.6), in this neighborhood we also have M > 0 on

L = 0 when v < v 0 .

From Leuma 4.2 and equation (4.5) we see that the graph of 8 L(v) lies in 9 only

when the domain of CL(v) is (b,;). in the next lema we shall show that the graph of

eM(v) lies in 9 when b < v <.

Lemma 4.3.

Under the hypotheses of Theorem 4.1 there is a constant i > 0 such that 0 Mv) )

for all v > b, with equality holding only at v - v.

Proof.

The curve M - 0 lies above the curve L - 0 for v 0 < v < 1 by Lemma 4.2, and the

curve L - 0 lies above the v-axis for v 0 ( v < ;. It is sufficient to show that the

curve 6 - 0 (v) takes on its minimum value in the interval (b,-) at v u v. Now

(4.8) am 0 - L

and by (4.3). since cv - cv(8),
V 2M

(4.9) 3 =0 0

so that
3M 3M

(4.10) L- (v,O) - !v (v,0) - -L(v,0)

From (4.5) and Lemma 4.2 we see that L(v,0J < 0 when b < v < ; and L(v,O) > 0 when

V < V(<. But

do M(v) 34 a1m L( v0)
(4.11) dv Tv (vO) / w (v,e) . c - )

and so eM (v) takes on it minimum at v = v and M (v) ) N(v) for all v > b, with

equality holding only at v - v.

lema 4.4.

Under the hypotheses of Theorem 4.1 the critical point (vl,0, ) is a saddle point

with a one-dimensional stable manifold and a two dimensional unstable manifold.
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Furthermore the fluid velocity is subsonic at the back state (v1,6) and is supersonic at

the front state (v0 , 0).

Proof.

The acoustic speed c in given by

(4.12) c 2 _v

Thus

(4.13) u- 2 = v(2I- + m2
)

since u - my. We need to show that

(4.14) k 
+ 
m2 > 0 at (vo, 0 )av ,

and

(4.15) + M2 < 0 at (v,,e,)

Now by hypotheses the chord connecting (vl,e 1 ) to (v0 e0) has slope -a2  and lies

above the Hugoniot curve (H - 0 curve) in A. Thus the slope of the curve H - 0 is

greater than the slope of the chord at (v0 te0 ).

From (2.28) and the Gibbs relation we have

Ie) v -v a' P P- V -  d V ( v p - -p
(4.16) dH - + k)dp + (e Ia -

Thus

" - v p " at (vo,po)

(4.17) dv 'nip / ni3, T a

and so

Z)W +2>0 at (v01 p0 )

This proves (4.14). We next show (4.15).

By Imma 4.2 the curve L - 0 lies below the curve - 0 for v 0 < v <v and so

dO1 dOt
(4.18) L d

dv > _- (V)

The strictness of the inequality can he shown to follow from the non-tangency hypothesis

and equation (4.4). Now

(4.19) deL 3L 3L
dv TV -Be

i-18-



and
dM am

(4.20) d " 3
/

thus by (4.18)

(4.21) D 2 M M L4< 0 at (v 1 ,8 1 )

3L 3m
since r and T- are positive. Substitutinq (4.3), (4.4), (4.8), and

(4.22) a. 3 2

into (4.21) gives

(4.23) D - cv(j~ + - e L) at (vl

But L(v ,e 1 0 and (see Section 2)

(4.24) 22e _ L

so that

(4.25) 0 - cv( + a •

Since 0 < 0, condition (4.15) follows at once.

To show that (v ,0,8 I ) Is a saddle point we linearize (2.24) about (viO,81 ) to

obtain

(4.26) ( ') A w

where

/ 0 1 0

(4.27) K rv +lz _1
m o 0a

the entries being evaluated at (vile I

Now at (V1 ,'1)

(4.28) det A - v 8 38 v D0

by (4.21). Also
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+ 2M

(4.29) trace A - m(--I-- + > 0aQ

Let Po1 ,p2 and 03 be the eigenvalues of A. Suppose first that these are all real and

that P ( p < p3" Then P P2 P3 - det A ( 0 by (4.28) and so either P < 0, P2 < 0,

and P3 < 0 or P ( 0, P 
> 

0, and P3 
> 

0. But 0 + p + P3 trace A > 0 by

(4.29), and hence P < 0, P2 > 0 and 03 > 0. Next suppose that plop2 and P3 are
not all real. Let P a - i$ and P2 " a + i, where %,0 and P3 are all real.

Then (M
2 + 2)p3 - det A < 01 hence p3 < 0 and 2a + p 3 - trace A > 0, so a > 0. -03i

Therefore the critical point (v1 ,0,
8
1 ) is a saddle point with a one-dimensional stable

manifold and a two-dimensional unstable manifold.

Define

(4.30) -(vwe) - - + Ow M)

Lemns 4.5.

Let (v(x),w(x),B(x)) be any solution of (2.24). Then

(4.31) 1 (v(x),w(x),S(x)) ) 0

That is * is nondecreasing along the trajectories of (2.24).

Proof.

We can use (2.13), (2.23), and (2.24c) to write (4.30) as

(4.32) 4 - M(n - n1) - 1

But

(4.33) ' - nT1' - e ) 0

by the Clausius-Duhem inequality, completing the proof.

Now *(vI,0, 8
1 ) - 0 and

(4.33) (v,0,0) - M(v,e)

so that ( (v 1,0,8) > 0 (< 0) for 8 > 8 ( 8). Hence

(4.34) 6(v1 ,0,9) > 0 for 8 * 1 .

The function 8 L(v) has a maximum on the interval (b, ), say ,since by (4.5) we see

that L(b) ( ) 0 and OL(v) > 0 for b v < Now
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(4.35) -- * (v,o,8) = L(v,O)

and so

(4.36) (v,O,;) ). 0

since L ) 0 to the riqht of the line v - v. Thus

(4.37) 4(v,0,
8
) > 0 for v > v0

since *(vl,0 ,) 0 0. quality occurs if 81 = ;).

we next show that the curve M = 0 intersects the line e - 6 for some v > v. Now

from (4.11) we have dO
do L(v.O) 2a

(4.38) -1 (v) = cm(vdv c c 0p0 2v V v

and so by the definition of v,
do

(4.39) d v 0

dd

Therefore, 8,(v) + - as v + - since by (4.38) v (v) + as v + -. Thus the

curve M = 0 intersects the line 0 = 8 for some v > v. From (4.38) and (4.33) it is

clear that *(v,0,O) > 0 for 0 < e < e.

Put

(4.40) w , max -2e01vOe)

We define a box B in phase space by

(4.41) {(v,w,)iv I < v < v< - w < < w, 8 (e < }

Note that with the exception of the bottom of the box and the point (v1,0,
8
1 ) we have

* ) 0 on as.

Lesmia 4.6.

Under the hypotheses of Theorem 4.1 every trajectory which intersects the bottom of

the box B leaves the box.

Proof.

We have from (2.24c)

KO' m( OI w
2 + M(v,e)) .
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From Lemma 4.3 the curve M - 0 does not drop below the line e - in Q. But

- c > 0 and so

(4.42) M(v,6) < 0 for b < v < w and 0 e 

with equality holding only if (v,O) - (v,O). Now

(4.43) 2e0 eac
ae ae

and by hypothesis a > 0 and

(4.44) lim inf 2a iv,O) 0 for b < v <
640 *(v) 0fo b -

so that

(4.44) LOG> 0 for b(v<r

and 8 sufficiently small and positive. We can choose e smaller if necessary so that

(4.44) holds when 0 ( 9 < i. Thus 0' < 0 on the bottom of the box B with the possible

exception of (v,0,i). Therefore every trajectory which intersects the bottom of the box

at some point leaves the box at that point.

Lemma 4.7.

Under the hypotheses of Theorem 4.1 one of the trajectories of the stable manifold of

(vi,0,6 I) enters the box B while the other never does. Thus there can be at most one

trajectory of (2.24) connecting (v0 0,A 0) to (VI,0,89 .

Proof.

We need to show that the line tangent to the stable manifold is transverse to the

plane v = vI in phase space. This line is parallel to the elgenvector associated with

the negative eigenvalue p of (4.27). Let (t, 2, 3)T be this eigenvector. Then we

have

(4.44) E 2 C2

We assert that 1 * 0, which is the required traneversality condition. Suppose for

contradiction that E, 0. Then from (4.44) and (4.27) we have
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r 2~ -A 0

(4.45)

(ip - mc) m m 0

But KP - mcv <0. Hence = 3 = 0, which is impossible.

Now suppose one of the trajectories forming the stable manifold of (vi,0,81 ) crosses

the plane v - v, at some point. Then > > 0 at this point since

2
(4.46) §(v,w,8) = O(v,0,8) + MOW

2e

and 0(vi,0,8 ) > 0 for 8 # 81 by (4.34). By Lemma 4.5, 0 is nondecreasing along

trajectories of (2.24), and so *(v 1,0,
8
I) > 0. But 4(vi,0,81 ) - 0 and hence any

trajectory forming the stable manifold cannot cross the plane v - v,.

If we replace x by -x in the system of ordinary differential equaiton (2.24) then

the direction of each trajectory in (2.24) wil be reversed. We shall refer to (2.24)

with x replaced by -x as the reversed system. Note that 0 decreases alonq any

trajectory of the reversed system and hence 0 is a Liapunov function in the sense of

LaSalle for the reversed system.

let us denote by 0 the trajectory of the reversed system that leaves (v1,0, 1 ) and

enters B.

Lemma 4.8.

Under the hypotheses of Theorem 4.1 the trajectory 0 is bounded.

Proof.

We shall show that 0 is contained in B. For the reversed system, 0 is

nonincreasinq along 0 and hence 0 4 0 on 0 since f(v1 ,0,81 ) I 0. But 0 ) 0 on

aB with the exception of the point (vl,0,8) and the bottom face of B. Thus 0

cannot cross IB except possibly at the bottom face. But by Lemma 4.6 and the fact that

the system is reversed, every trajectory which intersects the bottom face enters B.

Thus 0 cannot cross 3B and so it is hounded.
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To complete the proof of Theorem 4.1 we need to show that 0 enters (v ,0,8 ), that

is W(0) - {(v0 ,0,8 0 )) for the reversed system. Since 0 is a Liapunov function in the

sense of LaSalle for the reversed system and 0 is bounded, w(0) is contained in the

largest invariant subset of S E {(v,w,O) e closure of B : ' = 01, by LaSalle's

invariance principle (121.

From (4.33) we have

(4.47) (1'e + 2

32

Now upon substituting (2.24c) and (2.13) into (4.47) we have

2 2 'cO'2

(4.48) M' (X + 21)w + -

Therefore 0' = 0 implies w = 0' - 0 and by (2.24) also Ow' + L = 0 and M = 0 when

0' - 0. Thus the largest invariant subset of S is {(v1l,0,8 1 ),(v0 ,0,80)}. But 0' 0

on 0 so that 0' < 0 somewhere on 0 and hence 0 < 0 on 0. Therefore

W(0) - {(v, 0,8 )1 and so the trajectory 0 connects (v ,0,1 ) to (v ,0,06 .

It remains to show that n > n0 and B1 > 8 0. The first follows from (2.8), since

(4.30) and (4.48) show that the equality cannot hold. The second follows from (4.11)

since L(v,O) < 0 for v, < v < v0.

Example 1.

Suppose that cv is a large constant, so that by Lemma 3.1 the Hugoniot curve

generated by (v0 ,p0 ) is near the isotherm p(v,g0 ). Let us suppose that (v0 ,P0 ) is in

the vapor region and (vi,p,) is in the liquid region. Furthermore, suppose that the

straight line through (v0 ,p0 ) and (vl,pl) intersects the Hugoniot curve at only these

two points (see Figure 5).

In this example the hypotheses of Theorem 4.1 are satisfied and hence there is a shock

connecting (v0 ,p0 ) to (v1,pl). The shock layers converts vapor in the equilibrium

state (v0 ,p0 ) into liquid in the equilibirum state (vl,pl). We shall call such a layer

a liquefaction layer (131.
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* ' 2
4 chord with slope -m

1 * - ugoniot curve for a

b v 1

Figure 5

2xample 2.

We keep the same got up an in mcample 1, but with (v1.,p1) also in the vapor region

and v,< vo (see Figure 6). Then there is a gas-gas comipressive shock layer converting

gas in the more rarefied equilibrium state (v0,p0 ) to gas in the hotter denser

equilibrium state (v15P1 ).

P1

p IHgno 
uv o

* u

bvV 0V

Figure 6
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Example 3.

Let us suppose that cv  is constant and 0 < cv < R, so that y > 2. et us

choose (v0,P0 ) in either the vapor or super-heated vapor region, with v 0 > 7b and

P0 > 0. Then a I by (3.12), and thus the only reachable states on the Hugoniot curve

are to the right of

(y - 1)v0 + 2b
v -s + I

by TAima 3.6. Since v0 > 7b and Y > 2 we have

v > 1)7b + 2b . b 12bVa Y + I "'Y +-- I b

But the liquid region lies to the left of v = 3b, and hence no liquification shock is

possible (see Figure 7).

P

L super-heated vapor region

1q

U. Hugoniot curve
1 ( 0< c < R)

.

a) Vapo Regio n

n unstable region _

b v 0O v

Figure 7
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